Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-[(2-Hydroxy-1-naphthyl)(pyrrolidin-1yl)methyl]benzonitrile

Meng Wei Xue

Biochemical and Environmental Engineering College, Nanjing Xiaozhuang University, Nanjing 210017, People's Republic of China Correspondence e-mail: xmw1102@sina.com

Received 7 June 2010; accepted 2 July 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.064; wR factor = 0.149; data-to-parameter ratio = 8.0.

The title compound, $C_{22}H_{20}N_2O$, was obtained from the condensation reaction of 3-formylbenzonitrile, 2-naphthol and pyrrolidine. There are two molecules in the asymmetric unit, having similar conformations. Intramolecular $O-H\cdots N$ and $C-H\cdots O$ hydrogen bonds occur, with only van der Waals forces between molecules. The dihedral angles between the naphthalene ring system and the phenyl ring in the two molecules are 75.28 (10) and 76.07 (11)°. The five-membered rings adopt half-chair conformations.

Related literature

For the applications of Betti-type reactions, see: Lu et al. (2002); Xu et al. (2004); Wang et al. (2005).

Experimental

Crystal data

 $\begin{array}{l} C_{22}H_{20}N_2O\\ M_r = 328.40\\ Orthorhombic, Pca2_1\\ a = 18.735 \ (4) \ \text{\AA}\\ b = 10.475 \ (2) \ \text{\AA}\\ c = 18.122 \ (4) \ \text{\AA} \end{array}$

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\min} = 0.825, T_{\max} = 1.000$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.064 & 1 \text{ restraint} \\ wR(F^2) &= 0.149 & \text{H-atom parameters constrained} \\ S &= 1.07 & \Delta\rho_{\text{max}} &= 0.16 \text{ e } \text{ Å}^{-3} \\ 3612 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.16 \text{ e } \text{ Å}^{-3} \end{split}$$

 $V = 3556.4 (12) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.20 \times 0.20 \times 0.20$ mm

31413 measured reflections

3612 independent reflections

2166 reflections with $I > 2\sigma(I)$

Z = 8

T = 293 K

 $R_{\rm int} = 0.125$

Table 1

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots N1$	0.82	1.90	2.576 (5)	139
O2−H2A···N3 C39−H39A···O2	0.82 0.93	1.93 2.58	2.593 (5) 3.292 (6)	138 133

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL/PC*.

This work was supported by the Natural Science Foundation (04KJD150112) of Jiangsu Provincial Education Department.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2464).

References

- Lu, J., Xu, X. N., Wang, C. D., He, J. G., Hu, Y. F. & Hu, H. W. (2002). Tetrahedron Lett. 43, 8367–8369.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem. 70, 1897–1900.

Xu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). *Tetrahedron* Asymmetry, **15**, 475–479.

Acta Cryst. (2010). E66, o2006 [doi:10.1107/S1600536810026152]

3-[(2-Hydroxy-1-naphthyl)(pyrrolidin-1-yl)methyl]benzonitrile

M. W. Xue

Comment

Over one hundred years ago, Betti developed a straightforward synthesis involving the condensation of 2-naphthol, ammonia and equivalents of benzaldehyde, followed by the addition of HCl and KOH to yield 1-(a-aminobenzyl)-2-naphthol. This product which possesses an asymmetric carbon center is known as a Betti base. Betti-type reaction is an important method to synthesize chiral ligands and by this method many unnatural homochiral amino-phenol compounds have been obtained (Lu *et al.* 2002; Xu *et al.* 2004; Wang *et al.* 2005). Here we report the synthesis and crystal structure of the title compound, 3-[(2-hydroxynaphthalen-1-yl)(pyrrolidin-1-yl)methyl]benzonitrile (Fig. 1).

Both molecules in the asymmetric unit have the same relative conformation at the chiral carbon atoms. The naphthalene (A; C1–C10, B; C23–C32) and benzene (C; C16–C21, D; C34–C39) rings are strictly planar and the dihedral angles between A/C and B/D are 75.28 (10) and 76.07 (11)°, respectively. The two molecules are stabilized by intramolecular O—H···N hydrogen bonding, whereas only one is involved in intramolecular C—H···O hydrogen bonds (Table 1). Intermolecular interactions are only van der Waals forces.

Experimental

3-Formylbenzonitrile (1.97 g, 0.015 mol) and pyrrolidine (1.065 g, 0.015 mol) was added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen. The temperature was raised gradually to 120°C in one hour and the mixture was stirred at this temperature for 12 h. The system was treated with 30 ml of ethanol 95% and cooled. The precipitate was filtered and washed with a small amount of ethanol 95%. The title compound was isolated using column chromatography (petroleum ether:ethyl acetate 4:1 v/v). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate solution at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(O)$. In the absence of significant anomalous scattering effects, the 3377 Friedel pairs were merged. The relatively high R_{int} value and the low data/parameter ratio reflects the poor quality of the crystal.

Figures

Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

3-[(2-Hydroxy-1-naphthyl)(pyrrolidin-1-yl)methyl]benzonitrile

F(000) = 1392

 $\theta = 2.6 - 26.0^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K

Prism, colourless

 $0.20 \times 0.20 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.227 \ {\rm Mg \ m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3612 reflections

Crystal data

 $C_{22}H_{20}N_{2}O$ $M_{r} = 328.40$ Orthorhombic, $Pca2_{1}$ Hall symbol: P 2c -2ac a = 18.735 (4) Å b = 10.475 (2) Å c = 18.122 (4) Å V = 3556.4 (12) Å³ Z = 8

Data collection

Rigaku Mercury2 diffractometer	3612 independent reflections
Radiation source: fine-focus sealed tube	2166 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.125$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
CCD_Profile_fitting scans	$h = -23 \rightarrow 23$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)	$k = -12 \rightarrow 12$
$T_{\min} = 0.825, T_{\max} = 1.000$	<i>l</i> = −22→22
31413 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.064$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.149$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.065P)^2 + 0.150P]$ where $P = (F_o^2 + 2F_c^2)/3$
3612 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
452 parameters	$\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{min} = -0.16 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.99425 (19)	0.9948 (4)	0.6386 (2)	0.0722 (11)
H1A	0.9848	0.9279	0.6173	0.108*
O2	0.1596 (2)	0.5126 (4)	0.3506 (2)	0.0758 (11)
H2A	0.1799	0.5805	0.3587	0.114*
C20	0.8916 (3)	0.9893 (4)	0.4063 (3)	0.0511 (12)
C34	0.2940 (2)	0.6121 (4)	0.4724 (3)	0.0481 (11)
C1	0.8658 (3)	1.0060 (5)	0.6434 (3)	0.0506 (12)
N3	0.1789 (2)	0.7119 (3)	0.4331 (2)	0.0556 (11)
C17	0.8022 (3)	0.8267 (5)	0.4799 (3)	0.0613 (13)
H17A	0.7717	0.7707	0.5044	0.074*
C16	0.8526 (2)	0.8953 (4)	0.5204 (3)	0.0478 (11)
N1	0.9174 (2)	0.7925 (4)	0.6241 (2)	0.0553 (11)
C35	0.3411 (3)	0.6798 (5)	0.5162 (3)	0.0649 (14)
H35A	0.3232	0.7354	0.5516	0.078*
C23	0.1768 (2)	0.4942 (4)	0.4814 (3)	0.0540 (12)
C21	0.8972 (2)	0.9772 (4)	0.4825 (3)	0.0511 (12)
H21A	0.9312	1.0245	0.5081	0.061*
C33	0.2139 (2)	0.6242 (4)	0.4850 (3)	0.0512 (12)
H33A	0.2068	0.6583	0.5348	0.061*
C2	0.9328 (3)	1.0546 (5)	0.6582 (3)	0.0560 (13)
C9	0.8046 (3)	1.0760 (5)	0.6660 (2)	0.0495 (12)
C39	0.3220 (2)	0.5309 (4)	0.4191 (3)	0.0504 (12)
H39A	0.2915	0.4841	0.3890	0.060*
C11	0.8581 (3)	0.8773 (4)	0.6034 (3)	0.0521 (13)
H11A	0.8137	0.8375	0.6204	0.063*
C31	0.1686 (3)	0.4212 (5)	0.5466 (3)	0.0596 (14)
C22	0.9394 (3)	1.0752 (6)	0.3687 (3)	0.0764 (17)
C26	0.1079 (3)	0.2602 (6)	0.4724 (5)	0.084 (2)
H26A	0.0842	0.1825	0.4689	0.100*
C42	0.1570 (3)	0.9229 (6)	0.3957 (4)	0.091 (2)
H42A	0.1593	0.9249	0.3422	0.110*
H42B	0.1628	1.0091	0.4142	0.110*
C32	0.1309 (3)	0.3015 (5)	0.5413 (4)	0.0719 (18)
C41	0.2134 (3)	0.8384 (4)	0.4258 (3)	0.0692 (15)
H41A	0.2538	0.8341	0.3925	0.083*
H41B	0.2297	0.8691	0.4734	0.083*
C10	0.8134 (3)	1.1955 (5)	0.7035 (3)	0.0591 (14)
C4	0.8831 (3)	1.2381 (5)	0.7176 (3)	0.0683 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H4A	0.8895	1.3137	0.7436	0.082*
C38	0.3954 (2)	0.5194 (5)	0.4108 (3)	0.0522 (12)
C3	0.9407 (3)	1.1739 (5)	0.6948 (3)	0.0665 (15)
H3A	0.9860	1.2072	0.7030	0.080*
C12	0.9237 (3)	0.6728 (5)	0.5805 (3)	0.0701 (16)
H12A	0.9432	0.6894	0.5318	0.084*
H12B	0.8778	0.6308	0.5754	0.084*
C8	0.7341 (3)	1.0379 (5)	0.6519 (3)	0.0622 (14)
H8A	0.7265	0.9630	0.6254	0.075*
C30	0.1949 (3)	0.4570 (6)	0.6151 (4)	0.0794 (18)
H30A	0.2211	0.5320	0.6193	0.095*
C24	0.1520 (3)	0.4480 (5)	0.4139 (4)	0.0611 (14)
C44	0.1058 (3)	0.7426 (5)	0.4580 (4)	0.0766 (17)
H44A	0.1042	0.7514	0.5112	0.092*
H44B	0.0726	0.6761	0.4433	0.092*
C27	0.1212 (4)	0.2315 (6)	0.6069 (6)	0.098 (3)
H27A	0.0967	0.1543	0.6042	0.118*
C25	0.1188 (3)	0.3286 (5)	0.4107 (4)	0.0712 (16)
H25A	0.1040	0.2962	0.3654	0.085*
C19	0.8404 (3)	0.9221 (5)	0.3668 (3)	0.0645 (15)
H19A	0.8360	0.9326	0.3160	0.077*
C18	0.7966 (3)	0.8401 (5)	0.4044 (3)	0.0686 (15)
H18A	0.7627	0.7929	0.3787	0.082*
C37	0.4410 (3)	0.5868 (5)	0.4566 (3)	0.0708 (16)
H37A	0.4901	0.5774	0.4517	0.085*
C5	0.7527 (4)	1.2623 (5)	0.7266 (3)	0.0744 (16)
H5A	0.7590	1.3384	0.7523	0.089*
C15	0.9121 (3)	0.7469 (5)	0.7019 (3)	0.0729 (16)
H15A	0.8640	0.7190	0.7131	0.088*
H15B	0.9256	0.8138	0.7362	0.088*
N2	0.9776 (4)	1.1433 (6)	0.3394 (3)	0.114 (2)
C28	0.1449 (5)	0.2691 (8)	0.6720 (6)	0.113 (3)
H28A	0.1365	0.2204	0.7141	0.136*
C40	0.4246 (3)	0.4309 (6)	0.3597 (4)	0.0746 (17)
C6	0.6855 (4)	1.2217 (7)	0.7135 (4)	0.0821 (18)
H40A	0.6464	1.2691	0.7294	0.099*
C7	0.6758 (3)	1.1065 (7)	0.6754 (4)	0.0794 (18)
H7A	0.6300	1.0764	0.6661	0.095*
C13	0.9750 (4)	0.5932 (6)	0.6269 (4)	0.103 (2)
H13A	0.9643	0.5029	0.6222	0.123*
H13B	1.0240	0.6077	0.6118	0.123*
N4	0.4512 (3)	0.3616 (7)	0.3192 (4)	0.119 (2)
C43	0.0872 (3)	0.8681 (6)	0.4207 (5)	0.103 (2)
H43A	0.0558	0.8539	0.3789	0.123*
H43B	0.0638	0.9254	0.4551	0.123*
C29	0.1831 (5)	0.3845 (8)	0.6764 (4)	0.111 (3)
H29A	0.2006	0.4117	0.7217	0.134*
C14	0.9633 (4)	0.6377 (6)	0.7056 (4)	0.100 (2)
H14A	0.9437	0.5692	0.7353	0.121*

H14B	1.0081	0.6649	0.7274	0.121*
C36	0.4140 (3)	0.6667 (5)	0.5085 (4)	0.0752 (17)
H36A	0.4447	0.7127	0.5389	0.090*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.060 (2)	0.066 (2)	0.090 (3)	-0.0146 (19)	0.007 (2)	-0.011 (2)
O2	0.081 (3)	0.067 (3)	0.079 (3)	-0.006 (2)	-0.009 (2)	-0.005 (2)
C20	0.055 (3)	0.046 (3)	0.052 (3)	0.000(2)	-0.001 (3)	0.007 (2)
C34	0.051 (3)	0.041 (3)	0.052 (3)	-0.006 (2)	-0.002 (2)	0.001 (2)
C1	0.055 (3)	0.046 (3)	0.051 (3)	-0.010 (2)	0.003 (2)	0.000 (2)
N3	0.053 (2)	0.039 (2)	0.074 (3)	0.0024 (18)	0.012 (2)	-0.004 (2)
C17	0.050 (3)	0.063 (3)	0.071 (4)	-0.015 (3)	0.003 (3)	-0.009 (3)
C16	0.049 (3)	0.043 (3)	0.052 (3)	-0.004 (2)	0.002 (2)	-0.009 (2)
N1	0.065 (3)	0.047 (2)	0.054 (3)	-0.001 (2)	-0.002 (2)	0.002 (2)
C35	0.075 (4)	0.050 (3)	0.070 (4)	-0.005 (3)	-0.004 (3)	-0.011 (3)
C23	0.047 (3)	0.042 (3)	0.073 (3)	0.001 (2)	0.016 (3)	-0.001 (3)
C21	0.050 (3)	0.049 (3)	0.055 (3)	-0.007 (2)	0.000 (2)	-0.005 (2)
C33	0.064 (3)	0.035 (2)	0.055 (3)	-0.001 (2)	0.012 (3)	-0.002 (2)
C2	0.055 (3)	0.054 (3)	0.059 (3)	-0.009 (3)	0.010 (3)	-0.001 (2)
C9	0.059 (3)	0.048 (3)	0.041 (3)	-0.007 (2)	0.004 (2)	0.002 (2)
C39	0.052 (3)	0.044 (3)	0.055 (3)	-0.006 (2)	0.004 (2)	-0.005 (2)
C11	0.049 (3)	0.045 (3)	0.062 (3)	-0.009 (2)	-0.001 (2)	0.004 (2)
C31	0.061 (3)	0.041 (3)	0.077 (4)	0.003 (2)	0.023 (3)	-0.001 (3)
C22	0.088 (4)	0.084 (5)	0.057 (4)	-0.013 (4)	-0.007 (3)	0.006 (3)
C26	0.046 (3)	0.047 (3)	0.158 (7)	-0.004 (3)	0.008 (4)	-0.017 (5)
C42	0.090 (5)	0.056 (4)	0.129 (6)	0.017 (3)	0.001 (4)	0.007 (4)
C32	0.052 (3)	0.043 (3)	0.121 (6)	0.005 (3)	0.030 (4)	0.014 (3)
C41	0.076 (4)	0.042 (3)	0.090 (4)	-0.003 (3)	0.003 (3)	0.002 (3)
C10	0.068 (4)	0.052 (3)	0.058 (3)	-0.002 (3)	0.002 (3)	0.001 (3)
C4	0.084 (4)	0.056 (3)	0.065 (4)	-0.018 (3)	0.005 (3)	-0.010 (3)
C38	0.047 (3)	0.050 (3)	0.059 (3)	-0.005 (2)	0.007 (3)	0.004 (3)
C3	0.069 (4)	0.065 (3)	0.066 (4)	-0.022 (3)	0.004 (3)	-0.011 (3)
C12	0.090 (4)	0.054 (3)	0.067 (4)	0.009 (3)	-0.009 (3)	-0.003 (3)
C8	0.064 (4)	0.057 (3)	0.066 (4)	-0.004 (3)	0.004 (3)	0.001 (3)
C30	0.101 (5)	0.058 (4)	0.079 (5)	0.003 (3)	0.026 (4)	0.012 (4)
C24	0.049 (3)	0.049 (3)	0.085 (4)	-0.007 (2)	0.005 (3)	-0.015 (3)
C44	0.063 (3)	0.066 (4)	0.101 (5)	0.005 (3)	0.012 (3)	0.001 (3)
C27	0.086 (5)	0.049 (4)	0.160 (8)	0.008 (3)	0.048 (5)	0.029 (5)
C25	0.053 (3)	0.051 (3)	0.110 (5)	-0.005 (3)	0.000 (3)	-0.015 (4)
C19	0.071 (4)	0.064 (4)	0.058 (3)	0.001 (3)	-0.002 (3)	-0.005 (3)
C18	0.070 (4)	0.066 (4)	0.070 (4)	-0.012 (3)	-0.010 (3)	-0.014 (3)
C37	0.046 (3)	0.070 (4)	0.097 (5)	-0.007 (3)	-0.003 (3)	0.000 (3)
C5	0.094 (5)	0.065 (3)	0.064 (4)	0.006 (4)	0.007 (3)	-0.007 (3)
C15	0.096 (4)	0.062 (4)	0.061 (4)	-0.001 (3)	-0.011 (3)	0.002 (3)
N2	0.135 (5)	0.125 (5)	0.083 (4)	-0.047 (4)	0.015 (4)	0.016 (4)
C28	0.148 (8)	0.080 (6)	0.112 (7)	0.016 (5)	0.056 (6)	0.050 (5)

C40	0.045 (3)	0.090 (5)	0.089 (5)	0.003 (3)	0.007 (3)	-0.012 (4)
C6	0.084 (5)	0.081 (5)	0.081 (5)	0.026 (4)	0.003 (4)	-0.002 (4)
C7	0.060 (4)	0.092 (5)	0.086 (5)	0.007 (4)	0.004 (3)	0.007 (4)
C13	0.146 (7)	0.076 (4)	0.087 (5)	0.021 (4)	-0.015 (5)	0.003 (4)
N4	0.072 (4)	0.150 (6)	0.134 (6)	0.023 (4)	0.011 (4)	-0.041 (5)
C43	0.070 (4)	0.074 (4)	0.164 (7)	0.015 (3)	0.006 (5)	-0.002 (5)
C29	0.158 (7)	0.096 (6)	0.081 (5)	0.014 (5)	0.043 (5)	0.018 (4)
C14	0.136 (6)	0.067 (4)	0.098 (6)	0.013 (4)	-0.035 (5)	0.008 (4)
C36	0.071 (4)	0.061 (4)	0.094 (5)	-0.014 (3)	-0.014 (3)	-0.018 (3)

Geometric parameters (Å, °)

O1—C2	1.357 (6)	C41—H41A	0.9700
O1—H1A	0.8200	C41—H41B	0.9700
O2—C24	1.339 (7)	C10—C5	1.400 (8)
O2—H2A	0.8200	C10—C4	1.403 (7)
C20—C19	1.388 (7)	C4—C3	1.336 (8)
C20—C21	1.391 (7)	C4—H4A	0.9300
C20—C22	1.441 (8)	C38—C37	1.384 (7)
C34—C35	1.382 (7)	C38—C40	1.419 (8)
C34—C39	1.389 (7)	С3—НЗА	0.9300
C34—C33	1.523 (6)	C12—C13	1.526 (8)
C1—C2	1.381 (7)	C12—H12A	0.9700
C1—C9	1.421 (7)	C12—H12B	0.9700
C1-C11	1.537 (7)	C8—C7	1.376 (8)
N3—C33	1.469 (6)	C8—H8A	0.9300
N3—C44	1.477 (6)	C30—C29	1.363 (9)
N3—C41	1.481 (6)	C30—H30A	0.9300
C17—C18	1.381 (8)	C24—C25	1.399 (7)
C17—C16	1.395 (7)	C44—C43	1.519 (8)
С17—Н17А	0.9300	C44—H44A	0.9700
C16—C21	1.381 (6)	C44—H44B	0.9700
C16—C11	1.520(7)	C27—C28	1.322 (11)
N1-C11	1.471 (6)	C27—H27A	0.9300
N1-C12	1.487 (6)	C25—H25A	0.9300
N1-C15	1.491 (7)	C19—C18	1.369 (8)
C35—C36	1.381 (7)	C19—H19A	0.9300
С35—Н35А	0.9300	C18—H18A	0.9300
C23—C24	1.395 (8)	C37—C36	1.357 (8)
C23—C31	1.415 (7)	С37—Н37А	0.9300
C23—C33	1.531 (6)	C5—C6	1.351 (9)
C21—H21A	0.9300	C5—H5A	0.9300
С33—Н33А	0.9800	C15—C14	1.494 (8)
C2—C3	1.423 (7)	C15—H15A	0.9700
С9—С8	1.403 (7)	C15—H15B	0.9700
C9—C10	1.433 (7)	C28—C29	1.408 (12)
C39—C38	1.389 (6)	C28—H28A	0.9300
С39—Н39А	0.9300	C40—N4	1.147 (7)
C11—H11A	0.9800	C6—C7	1.402 (9)

C31—C30	1.388 (8)	C6—H40A	0.9300
C31—C32	1.442 (8)	С7—Н7А	0.9300
C22—N2	1.142 (7)	C13—C14	1.516 (9)
C26—C25	1.343 (9)	C13—H13A	0.9700
C26—C32	1.389 (9)	C13—H13B	0.9700
С26—Н26А	0.9300	C43—H43A	0.9700
C42—C41	1.482 (8)	C43—H43B	0.9700
C42—C43	1.497 (9)	С29—Н29А	0.9300
C42—H42A	0.9700	C14—H14A	0.9700
C42—H42B	0.9700	C14—H14B	0.9700
C32—C27	1.409 (10)	С36—Н36А	0.9300
C2	109 5	C39 - C38 - C40	120.6 (5)
$C_2 = O_1 = H_1 A$	109.5	C4-C3-C2	120.0(5) 120.1(5)
C_{19} C_{20} C_{21}	109.5	C4 - C3 - H3A	110.0
$C_{19} = C_{20} = C_{21}$	121.5(5)	C_{2} C_{3} H_{3} A	110.0
$C_{1}^{21} = C_{20}^{20} = C_{22}^{22}$	118.6 (5)	N1 C12 C13	102.5(4)
$C_{21} = C_{20} = C_{22}$	118.0(3)	N1 C12 H12A	102.3 (4)
$C_{33} = C_{34} = C_{34}$	110.2(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111.5
$C_{33} = C_{34} = C_{33}$	120.0(4)	N1 C12 H12P	111.5
$C_{39} - C_{34} - C_{33}$	121.0(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111.5
$C_2 = C_1 = C_9$	119.1 (4)	C13-C12-H12B	111.5
$C_2 = C_1 = C_1 I_1$	120.0 (4)	H12A - C12 - H12B	109.2
C9—C1—C11	120.9 (4)	$C_{7} = C_{8} = C_{9}$	122.8 (5)
C_{33} N3 $-C_{44}$	110.8 (4)	$C = C = H \otimes A$	118.0
C_{33} N3-C41	114.9 (4)	C9—C8—H8A	118.6
C44—N3—C41	103.7 (4)	$C_{29} = C_{30} = C_{31}$	121.4 (7)
	121.3 (5)	C29—C30—H30A	119.3
C18—C17—H17A	119.3	C31—C30—H30A	119.3
C16C1/H1/A	119.3	02 - 024 - 023	122.8 (4)
C21—C16—C17	118.0 (5)	02-024-025	117.6 (6)
C21—C16—C11	121.9 (4)	C23-C24-C25	119.7 (6)
	120.2 (4)	N3-C44-C43	105.3 (5)
CII—NI—CI2	115.7 (4)	N3—C44—H44A	110.7
CII—NI—CIS	112.6 (4)	C43—C44—H44A	110.7
C12—N1—C15	103.7 (4)	N3—C44—H44B	110.7
C36—C35—C34	121.5 (5)	C43—C44—H44B	110.7
С36—С35—Н35А	119.2	H44A—C44—H44B	108.8
С34—С35—Н35А	119.2	C28—C27—C32	123.7 (7)
C24—C23—C31	120.5 (5)	С28—С27—Н27А	118.1
C24—C23—C33	119.8 (5)	С32—С27—Н27А	118.1
C31—C23—C33	119.7 (5)	C26—C25—C24	120.6 (6)
C16—C21—C20	120.3 (5)	C26—C25—H25A	119.7
C16—C21—H21A	119.9	C24—C25—H25A	119.7
C20—C21—H21A	119.9	C18—C19—C20	118.4 (5)
N3—C33—C34	113.3 (4)	C18—C19—H19A	120.8
N3—C33—C23	109.1 (4)	С20—С19—Н19А	120.8
C34—C33—C23	111.5 (4)	C19—C18—C17	120.8 (5)
N3—C33—H33A	107.6	C19—C18—H18A	119.6
С34—С33—Н33А	107.6	C17—C18—H18A	119.6
С23—С33—Н33А	107.6	C36—C37—C38	120.1 (5)

O1—C2—C1	123.4 (4)		С36—С37—Н37А		120.0
O1—C2—C3	116.0 (5)		С38—С37—Н37А		120.0
C1—C2—C3	120.6 (5)		C6—C5—C10		123.2 (6)
C8—C9—C1	124.0 (4)		C6—C5—H5A		118.4
C8—C9—C10	116.3 (5)		С10—С5—Н5А		118.4
C1—C9—C10	119.7 (4)		N1-C15-C14		104.2 (5)
C34—C39—C38	120.1 (4)		N1-C15-H15A		110.9
С34—С39—Н39А	119.9		C14—C15—H15A		110.9
C38—C39—H39A	119.9		N1-C15-H15B		110.9
N1—C11—C16	112.2 (4)		C14—C15—H15B		110.9
N1—C11—C1	109.8 (4)		H15A—C15—H15B		108.9
C16—C11—C1	111.4 (4)		C27—C28—C29		118.5 (7)
N1—C11—H11A	107.7		C27—C28—H28A		120.8
C16—C11—H11A	107.7		C29—C28—H28A		120.8
C1—C11—H11A	107.7		N4-C40-C38		176.9 (6)
C30—C31—C23	124.2 (5)		С5—С6—С7		118.6 (6)
C30—C31—C32	117.9 (6)		C5-C6-H40A		120.7
C23—C31—C32	117.8 (6)		C7—C6—H40A		120.7
N2—C22—C20	179.4 (7)		С8—С7—С6		119.9 (6)
C25—C26—C32	122.4 (5)		С8—С7—Н7А		120.0
C25—C26—H26A	118.8		С6—С7—Н7А		120.0
C32—C26—H26A	118.8		C14—C13—C12		105.1 (5)
C41—C42—C43	106.4 (5)		C14—C13—H13A		110.7
C41—C42—H42A	110.4		C12—C13—H13A		110.7
C43—C42—H42A	110.4		C14—C13—H13B		110.7
C41—C42—H42B	110.4		С12—С13—Н13В		110.7
C43—C42—H42B	110.4		H13A—C13—H13B		108.8
H42A—C42—H42B	108.6		C42—C43—C44		105.4 (5)
C26—C32—C27	123.8 (7)		C42—C43—H43A		110.7
C26—C32—C31	118.8 (6)		С44—С43—Н43А		110.7
C27—C32—C31	117.4 (7)		С42—С43—Н43В		110.7
N3—C41—C42	104.8 (4)		С44—С43—Н43В		110.7
N3—C41—H41A	110.8		H43A—C43—H43B		108.8
C42—C41—H41A	110.8		C30—C29—C28		121.1 (8)
N3—C41—H41B	110.8		С30—С29—Н29А		119.5
C42—C41—H41B	110.8		С28—С29—Н29А		119.5
H41A—C41—H41B	108.9		C15—C14—C13		106.6 (5)
C5—C10—C4	122.9 (5)		C15—C14—H14A		110.4
C5—C10—C9	119.0 (5)		C13—C14—H14A		110.4
C4—C10—C9	118.1 (5)		C15—C14—H14B		110.4
C3—C4—C10	122.4 (5)		C13—C14—H14B		110.4
C3—C4—H4A	118.8		H14A—C14—H14B		108.6
C10—C4—H4A	118.8		C37—C36—C35		120.0 (5)
C37—C38—C39	120.1 (5)		С37—С36—Н36А		120.0
C37—C38—C40	119.1 (5)		С35—С36—Н36А		120.0
II. Lucas La La La Carta de Co					
пyarogen-bona geometry (A, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A

O1—H1A···N1	0.82	1.90	2.576 (5)	139.
O2—H2A···N3	0.82	1.93	2.593 (5)	138.
С39—Н39А…О2	0.93	2.58	3.292 (6)	133.

